Контакты

Какой раздел биологии изучает бактерии. Определение микробиологии как науки. Объекты изучения, разделы микробиологии. Задачи медицинской микробиологии Микробиологические вещества

По эпидпоказаниям живой аттенуированной туляремийной вакциной.

Специфическое лечение – не разработано.

Микробиология как наука. Предмет и задачи микробиологии.

Микробиология (от греч. micros – малый, bios – жизнь, logos – учение) – наука о мельчайших невидимых невооруженным взглядом живых объектах – микроорганизмах, закономерностях их развития и тех изменениях, которые они вызывают в среде обитания и в окружающей среде.

Термин «микроорганизмы» ввел французский ученый Седдило в конце XIX века.

Микроорганизмы – наиболее древняя форма организации жизни на Земле, они появились задолго до возникновения растений и животных – примерно 3-4 млрд. лет тому назад. В настоящее время они представляют собой по количеству самую значительную и самую разнообразную часть организмов, населяющих биосферу Земли. Они находятся в воздухе, воде, почве, пище, на окружающих нас предметах, на поверхности и внутри нашего тела и других организмов животного и растительного мира, и даже в космосе.

Все микроорганизмы подразделяются на:

Ø патогенные (от греч. patos – болезнь) – болезнетворные, т.е. способные вызвать инфекционное заболевание;

Ø условно-патогенные – вызывают заболевания при определенных условиях;

Ø сапрофитные (от греч. sapros – гнилой и phyton – растения) – непатогенные/неболезнетворные, не вызывают заболевания у человека.

Название «микробиология» предложено французским ученым Дюкло . Микробиология зародилась в пределах биологии. Затем она постепенно дифференцировалась на самостоятельные научные дисциплины :

Ø частная;

Ø медицинская;

Ø клиническая (изучает микроорганизмы, вызывающие заболевания в ЛПУ);

Ø санитарная;

Ø ветеринарная (изучает микроорганизмы, патогенные для животных);

Ø сельскохозяйственная (изучает микроорганизмы – вредителей растений);

Ø морская (изучает микроорганизмы – обитателей морей и океанов);

Ø космическая (изучает микроорганизмы, населяющих космическое пространство);

Ø техническая микробиология (использует микроорганизмы для получения разнообразных продуктов, необходимых для жизнедеятельности людей – вакцины, диагностикумы, ферменты и т.д.).

Предмет изучении общей микробиологии – общие закономерности, биологические свойства микроорганизмов вне зависимости от их видовой принадлежности: морфологию, физиологию, биохимию, генетику, экологию, эволюцию и другие признаки микроорганизмов.

Предмет изучении частной микробиологии – особенности биологических свойств микроорганизмов, характерных определенному виду.

Предмет изучения медицинской микробиологии патогенные и условно-патогенные микроорганизмы , процессы их взаимодействия с макроорганизмом.

Задачи медицинской микробиологии:

Ø микробиологическая диагностика инфекционных заболеваний;

Ø разработка методов специфической профилактики;

Ø разработка этиотропного лечения инфекционных болезней.

В составе медицинской микробиологии выделяю следующие разделы :

Ø бактериология (объект изучения – бактерии);

Ø вирусология (объект изучения – вирусы);

Ø микология (объект изучения – грибы);

Ø прототозоология (объект изучения – простейшие);

Ø альгология (объект изучения – микроскопичские водоросли);

Ø иммунология (объект изучения – защитных реакции организма) и др.

Предмет изучения санитарной микробиологии , тесно связанной с медицинской микробиологией, – санитарно-микробиологическое состояние объектов окружающей среды и пищевых продуктов , разработка санитарно-микробиологических нормативови методов индикации патогенных микроорганизмов в различных объектах окружающей среды.

Исторические этапы развития микробиологии.

Выделяют 5 исторических периода развития и становления микробиологии как науки.

I. Эвристический период .

Многие тысячелетия человечество пользовалось плодами жизнедеятельности микроорганизмов, не подозревая об их существовании. Хотя мысль о наличии в природе невидимых живых существ возникала у многих исследователей. Гиппократ , Парацельс (VI век до н.э.) высказывали предположение о том, что «миазмы», обитающие в болотах, вызывают различные болезни у человека, попадая в его организм через рот. В наиболее законченной форме идею сформулировал Джироламо Фракосторо в труде «О контагиях, контагиозных болезнях и лечении» (1546 г.): заражение человека может происходить тремя путями – при непосредственном соприкосновении, опосредованно (через предмет) и на расстоянии, но при обязательном участии контагий («зародышей болезней»). Однако это были гипотезы, доказательств которых у них не было.

II. Описательный период (морфологический) – охватывает вторую половину XVIII века и продолжается до середины XIX века . Связан с созданием микроскопа и открытием микроскопических существ, невидимых глазом человека. Первый микроскоп был создан в 1590 г. Гансом и Захарием Янсенами , но у него было увеличение всего лишь в 32 раза. Голландский натуралист Антоний Левенгук (1632-1723 гг.) сконструировал микроскоп с увеличением в 160-300 раз, при помощи которого ему удалось обнаружить мельчайших «живых зверьков» (анималькусов ) в дождевой воде, зубном налете и других материалах. Зарисованные им формы микроорганизмов были удивительно правдивы.

В этот же период в 1771 г. выдающийся русский врач Данило Самойлович (1744-1805 гг.) в опыте самозаражения гноем больных чумой доказал роль микроорганизмов в этиологии чумы и возможность предохранения людей от чумы с помощью прививок. Д.С. Самойлович был убежденным сторонником живой природы возбудителя чумы и за 100 с лишним лет до открытия этого микроба пытался обнаружить его. Лишь несовершенство микроскопов того времени помешало ему сделать это. Он предположил возможность искусственного создания невосприимчивости к инфекционному агенту и даже предпринял попытку создания противочумной вакцины. Эти исследования предшествовали работам Э. Дженнера. Работы Д.С. Самойловича внесли большой вклад в разработку мероприятий по борьбе с чумой.

В 1796 г. Эдвард Дженнер (1749-1823 гг.) создал и успешно применил вакцину для профилактики натуральной оспы, взяв материал от доярки, больной коровьей оспой.

III. Физиологический период (Пастеровский) (вторая половина XIX века) – «золотой век» микробиологии. С момента обнаружения микроорганизмов, возник вопрос не только об их роли в патологии человека, но и об их устройстве, биологических свойствах, процессах жизнедеятельности, экологии и т.д. Поэтому с середины XIX века началось интенсивное изучение физиологии бактерий.

Л. Пастер (1822-1895 гг.) – основатель французской школы микробиологии (химик по образованию, талантливый экспериментатор, сделал ряд фундаментальных открытий во многих областях науки, в том числе и в микробиологии), его основные достижения:

Ø открытие бактериальной природы брожения и гниения при изучение болезней вина и пива;

Ø предложение мягкого метода стерилизации – пастеризации;

Ø доказательство невозможности самопроизвольного зарождения жизни (если стерильный бульон оставить в открытой колбе, то он прорастет, но если стерильный бульон поместить в колбу, сообщающуюся с воздухом через спиральную трубку, то бульон не прорастет, т.к бактерии осядут на изогнутых частях трубки);

Ø создание основ вакцинного дела;

Ø разработка и получение вакцины против бешенства, сибирской язвы у животных и куриной холеры;

Ø открытие возбудителей сибирской язвы (Bacillus anthracis), родовой горячки (стрептококки), фурункулеза (стафилококки).

Р. Кох (1843-1910 гг.) – основатель школы немецких микробиологов, его достижения:

Ø внедрение в практику микробиологии анилиновых красителей, иммерсионной системы, плотных питательных сред;

Ø открытие возбудителей туберкулеза и холеры у человека;

Ø сформулирована триаду критериев, по которым можно было установить связь инфекционного заболевания с определенным микроорганизмом (триада Генле-Коха – эти принципы до Коха выдвигал Генле, а Кох сформулировал и развил):

1) микроб, предполагаемый в качестве возбудителя болезни, всегда должен обнаруживаться только при данном заболевании, не выделяясь при других болезнях и от здоровых людей;

2) данный микроб должен быть выделен в чистой культуре;

3) чистая культура этого микроба должна вызывать у экспериментального животного заболевание с клинической и паталогоанатомической картиной, свойственной заболеванию человека.

Сейчас эта триада имеет относительное значение, установление роли микроорганизма в развитии инфекционного заболевания не всегда укладывается в рамки триады.

IV. Иммунологический период (конец XIX – начало XX веков), связан с работами И.И. Мечникова и П. Эрлиха.

И.И. Мечников (1845-1916 гг.) – один из основоположников иммунологии, описал явление фагоцитоза (клеточная теория иммунитета).

Пауль Эрлих (1854-1915 гг.) сформулировал теорию гуморального иммунитета, объяснив происхождение антител и их взаимодействие с антигенами.

В 1908 г. И.И. Мечникову и П. Эрлиху была присуждена Нобелевская премия за работы в области иммунологии.

Конец XIXознаменовался эпохальным открытием царства вирусов.

Д.И. Ивановский (1864-1920 гг.) – первооткрыватель вирусов. Будучи сотрудником кафедры ботаники Петербургского университета в 1892 г. при изучении мозаичной болезни табака пришел он к выводу, что заболевание вызвано фильтрующимся агентом, впоследствии названным вирусом.

1928 г. – А. Флеминг , изучая явления микробного антагонизма, получил нестабильный пенициллин.

А в 1940 г. – Г. Флори и Э. Чейн получили стабильную форму пенициллина.

Отечественный пенициллин был разработан в 40-е годы прошлого столетия ленинградским микробиологом З.В. Ермольевой.

V. Современный период (начался в середине XX века) связан с научно-технической революцией в естествознании.

1944 г. – О. Эвери, К. Мак-Леод, К. Мак-Карти доказали роль ДНК в передаче наследственной информации.

1953 г. – Д. Уотсон и Ф. Крик расшифровали структуру ДНК.

В 60-70 гг. появились работы по генетике бактерий, становление генной инженерии.

1958 г. – П. Медавар и Гашек описали явление иммунологической толерантности. 1959 г. – Р. Портер и Д. Эдельман смоделировали молекулу иммуноглобулина.

1982 г. – Р. Галло, 1883 г. Л. Монтанье открыли ВИЧ.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

1. Микрофлора сырья

Использованная литература

Введение

Человечество давно научилось использовать микробиологические процессы в практической деятельности. Многие микробиологические процессы применяются в пищевой промышленности. Например, в основе технологического приготовления хлеба лежат биохимические процессы спиртового и молочнокислого брожения, возбудителями которых являются дрожжи и молочнокислые бактерии. Эти микроорганизмы обуславливают необходимую степень разрыхления и кислотность полуфабрикатов, вкус и аромат хлеба, способствуют улучшению качества изделий, повышению их пищевой ценности.

Так как в хлебопечении и производстве мучных кондитерских изделий сырье не стерилизуют, получение и использование чистых культур имеет важное значение, поскольку они обеспечивают нормальное брожение полуфабрикатов и выпуск готовых изделий стандартного качества. Кроме того, тесто готовят в нестерильных условиях, и в полуфабрикатах кроме полезных микроорганизмов развиваются также и вредные. Для контроля микробиологического состояния производства хлебобулочных и мучных кондитерских изделий на предприятиях созданы микробиологические лаборатории, которые занимаются поддерживанием и возобновлением заквасок и чистых культур и микробиологическим контролем питательных сред, полуфабрикатов и готовой продукции.

Технически чистыми называют культуры, с незначительной примесью других видов микроорганизмов. В хлебопекарной промышленности к чистым культурам относятся прессованные и сушеные дрожжи. Смешанными называют культуры, состоящие из клеток микроорганизмов двух и более видов (например, микроорганизмы заквасок и теста, содержащие дрожжи и молочнокислые бактерии).

1. Микрофлора сырья

В хлебопекарном производстве и при производстве мучных кондитерских изделий в качестве сырья применяют муку, дрожжи, сахар, сахаристые вещества, жиры, яйца и яйцепродукты, молоко и молочные продукты, фрукты и ягоды, вкусовые ароматические и другие вещества. Сырье как растительного, так и животного происхождения содержит большое количество питательных веществ и, таким образом, является благоприятной средой для развития микроорганизмов. Поэтому на пищевых предприятиях следует уделять большое внимание микробиологическому контролю поступающего на производство сырья, а также соблюдать санитарные требования при его хранении, переработке и транспортировке.

Мука. При размоле в муку попадают все микроорганизмы, находящиеся на поверхности зерна, в результате их жизнедеятельности мука при хранении может подвергаться микробиологической порче.

Микробиологическая порча муки происходит при увеличении содержания в ней влаги свыше 15% в результате неправильного хранения. Мука прокисает в результате активизации жизнедеятельности молочнокислых бактерий, которые сбраживают сахара муки с образованием кислот. При хранении муки на складах при повышенной относительной влажности воздуха происходит плесневение под действием микроскопических грибов.

Прогоркание муки является результатом окисления жиров муки кислородом воздуха и ферментативного гидролиза жиров. При хранении муки влажностью более 20% происходит самосогревание муки, которое сопровождается размножением спорообразующих бактерий, вызывающих тягучую болезнь хлеба. Такая мука в хлебопечении и в производстве мучных кондитерских изделий не используется.

Крахмал. Сырой картофельный крахмал является скоропортящимся продуктом, так как имеет высокую влажность (около 50%). При неблагоприятных условиях хранения в крахмале интенсивно размножаются бактерии, что приводит к микробиологической порче крахмала - его закисанию, изменению цвета. Сухой крахмал, имеющий влажность 20%, не подвергается микробиологической порче. Если крахмал хранить при высокой относительной влажности воздуха, то вследствие высокой гигроскопичности (способности поглощать влагу) он может увлажняться; образуя комки, развиваются микроорганизмы и появляется гнилостный запах.

Дрожжи. В хлебопечении используются прессованные, сушеные, жидкие дрожжи и дрожжевое молоко. В прессованных дрожжах могут содержаться посторонние микроорганизмы, присутствие которых нежелательно, так как они снижают качество дрожжей. К ним относятся дикие дрожжи из рода Candida (Кандида), которые снижают подъемную силу дрожжей, а также гнилостные и другие бактерии, ухудшающие стойкость при хранении.

Поваренная соль. Соль может быть обсеменена споровыми формами микроорганизмов. Она имеет низкую влажность, которая меньше той, при которой могут жить микроорганизмы. Поэтому соль не подвергается микробиологической порче.

Сахар и сахаристые вещества. Сахар является основным сырьем, входящим в рецептуру мучных кондитерских изделий, а также в сдобные и многие хлебобулочные сорта. Влажность сахара не более 0,15%, поэтому при правильном хранении он не подвергается микробиологической порче.

При нарушении санитарных требований и правил хранения в сахаре могут развиваться дрожжи, споры бактерий и грибов, так как при хранении сахара во влажной среде на поверхности его кристаллов конденсируется влага, в которой растворяется сахар. В образовавшейся пленке сахарного раствора развиваются микроорганизмы, а выделяемые ими кислоты разлагают сахарозу, что резко ухудшает вкус сахара.

Микробиологической порче подвергаются иногда патока и мёд. Они содержат большое количество сухих веществ, в том числе сахара. Микроорганизмы развиваются в том случае, если в патоку и мёд попадает вода. В результате происходит брожение и закисание. Для прекращения брожения патоку и мёд рекомендуется нагреть до 75-85°С.

Молоко и молочные продукты. Молоко и сливки являются благоприятной средой для жизнедеятельности многих микроорганизмов. При неправильном хранении наблюдаются различные виды микробиологической порчи этих продуктов. К микроорганизмам вызывающим порчу молока, относятся молочнокислые, гнилостные, маслянокислые, слизеобразующие, пигментобразующие бактерии, дрожжи, бактерии кишечной группы.

Молочнокислые бактерии сбраживают молочный сахар с образованием молочной кислоты. Избыток молочной кислоты вызывает скисание молока; вкус молока при этом приятный, кисловатый. Маслянокислые бактерии вызывают в молоке брожение, в результате которого молоко скисает и приобретает неприятный прогорклый вкус и запах. Гнилостные бактерии, развиваясь в молоке, вызывают прогоркание и ухудшают вкус, запах становится неприятный, гнилостный. Слизеобразующие бактерии вызывают тягучесть молока. Пигментобразующие бактерии вызывают окрашивание молока (покраснение, посинение). Бактерии кишечной группы вызывают свертывание молока с образованием СО2.

Молоко и молочные продукты могут стать источником пищевых отравлений, если в них попадает золотистый стафилококк. Молоко загрязняется стафилококком при доении коров, особенно когда коровы больны маститом. При размножении стафилококка в молоке не наблюдается признаков порчи. Для предотвращения порчи молока его хранят в холодильнике при температуре не выше 8°С в течение 20 ч или пастеризуют. Для длительного хранения из молока готовят молочные консервы - это сгущённое молоко без сахара или с сахаром и сухое молоко.

Сгущённое молоко без сахара при правильном ведении технологического процесса приготовления и соответствующих условиях может храниться в течение нескольких месяцев. При нарушении этих требований возникает микробиологическая порча сгущённого молока. В результате жизнедеятельности кислотообразующих бактерий происходит его свертывании, а при развитии гнилостных и маслянокислых - вздутие консервных банок, под действием образующих газов (бомбаж)

В сгущённом молоке с сахаром концентрация сухого вещества повышенная. Сахар играет роль консервируемого вещества и препятствует развитию микроорганизмов. В сгущённое молоко микроорганизмы попадают из исходного сырья - молока и сахара. При хранении сгущённое молоко с сахаром иногда подвергается микробиологической порче. Оно может заплесневеть, загустеть в результате развития микрококков. Микроскопические грибы вызывают комкование, дрожжи - бомбаж.

Творог и сметана подвергаются микробиологической порче в результате жизнедеятельности различных микроорганизмов. Так, дрожжи вызывают их брожение, молочнокислые бактерии - прокисание, гнилостные бактерии - ослизнение, горький вкус. Творог и сметану необходимо хранить в холодильнике при температуре 2-4°С.

Жиры и масла. Сливочное масло и маргарин обсеменены большим количеством различных микроорганизмов. Главным образом, это молочнокислые бактерии: встречаются гнилостные, спорообразующие и флуоресцирующие бактерии, дрожжеподобные грибы. При неправильном хранении они вызывают различные виды порчи масла. Например, при размножении молочнокислых бактерий наблюдается прокисание, гнилостные бактерии придают горький вкус, спорообразующие - рыбный вкус и запах, дрожжеподобные грибы вызывают прогоркание, затхлый вкус и запах, микроскопические грибы - плесневение. Масло, подвергнутое микробиологической порче, в производство не допускается. Хранят масло в холодильнике при температуре минус 8-10°С.

Топленое масло имеет влажность не более 1%, растительное - 0,3%, поэтому они не подвергаются микробиологической порче. Но при длительном хранении растительного масла образуется осадок, который является хорошей питательной средой для ряда микроорганизмов, продукты жизнедеятельности которых ухудшают качество растительного масла..

Яйца и яйцепродукты. В хлебопекарном производстве и в производстве мучных кондитерских изделий применяют яйца куриные (реже - гусиные и утиные), меланж, яичный порошок. Яйца являются хорошей питательной средой для развития микроорганизмов, так как они имеют повышенную влажность (73%) и содержат много белков, жиров и других веществ. Внутри яйца условно стерильны, и микроорганизмы могут проникать в них только при повреждении скорлупы и оболочки. Скорлупа яиц чаще всего обсеменяется во время сбора, хранения и транспортирования. Заражение может произойти и при формировании яйца в организме птицы, если она больна, в этом случае в яйцах можно обнаружить сальмонеллы, стафилококки.

Гнилостные бактерии, микроскопические грибы, бактерии кишечной группы и др. Если микроорганизмы находятся на поверхности скорлупы, то при соблюдении условий хранения микрофлора не развивается. При повышении температуры и влажности воздуха микроорганизмы становятся, более активны, проникают внутрь яиц, размножаются и вызывают гнилостное разложение. Образующиеся при этом продукты придают яйцу лежалый или тухлый запах. Утиные и гусиные яйца могут быть заражены сальмонеллами, так как этих микроорганизмов много в кишечнике водоплавающей птицы. Утиные и гусиные яйца являются причиной пищевых отравлений, поэтому они проходят тщательную санитарную обработку. Их применяют только для изделий, приготовление которых включает длительную обработку при высокой температуре. Запрещается употребление этих яиц для приготовления кремов и сбивных кондитерских изделий.

Меланж - замороженная смесь яичных белков, желтков. Перед использованием его размораживают и хранят не более 4 ч, иначе в нем быстро размножаются микроорганизмы, что приведет к порче меланжа.

Яичный порошок - это содержимое яйца, высушенное до влажности не более 9%. Хранение в герметичной таре исключает микробиологическую порчу, но при повышенной влажности яичный порошок плесневеет или загнивает.

Кофе, какао, орехи. Эти продукты являются хорошей питательной средой для развития микроорганизмов. При длительном хранении в условиях повышенной влажности воздуха наблюдается их плесневение. Для предохранения от микробиологической порчи эти продукты хранят в сухих, хорошо проветриваемых помещениях.

Фрукты и ягоды. Свежие фрукты и ягоды содержат много влаги, сахаров, витаминов и других веществ, что делает среду благоприятной для развития многих микроорганизмов - микроскопических грибов, дрожжей и бактерий.

Во избежание микробиологической порчи, фрукты и ягоды следует хранить в холодильнике не более 2 суток при температуре 0-2°С. Для длительного хранения фрукты и ягоды консервируют путем замораживания, сушки, а также путем приготовления из них полуфабрикатов (пюре, повидло, варенья, подварок, джема).

Фрукты и ягоды замораживают при температуре минус 10-20°С, при этом количество микроорганизмов заметно уменьшается. Скорость их отмирания зависит от их вида и степени обсемененности сырья. Особенно устойчивы к низкой температуре споры бактерий Clostridium botulinum (Клостридиум ботулинум), кишечная палочка и сальмонеллы. После оттаивания на плодах снова начинают развиваться микроорганизмы - микроскопические грибы и дрожжи. Сушка - это способ консервирования фруктов и ягод, при котором из продукта выделяется влага. В результате создаются условия, при которых жизнедеятельность различных микроорганизмов подавлена. Но во время высушивания погибают не все микроорганизмы. Долго сохраняется жизнеспособность споры бактерии, микроскопических грибов, дрожжи, а также патогенные микробы кишечной группы. Сушеные фрукты и ягоды хранят при температуре 10°С и относительной влажности воздуха 65%. Несоблюдение условий хранения, в частности повышение влажности воздуха и увлажнение сушеных фруктов и ягод, ведет к их микробиологической порче.

Плодово-ягодные полуфабрикаты изготовляют с добавлением сахара при уваривании, поэтому они устойчивы при хранении. Но в них могут содержаться микроорганизмы, вызывающие порчу. Вредные микроорганизмы попадают из сырья или при нарушении правил приготовления. В плодово-ягодных полуфабрикатах могут размножаться дрожжи, вызывающие спиртовое брожение; микроскопические грибы придающие продуктам неприятный вкус и запах; молочнокислые и уксуснокислые бактерии, под действием которых продукт закисает. Во фруктовые пюре и повидло в качестве консервантов-антисептиков добавляют сернистую или сорбиновую кислоту.

2. Микробиология хлебобулочных и мучных кондитерских изделий

микрофлора хлебопекарный мучной порча

Технология хлеба и мучных кондитерских изделий из дрожжевого теста (крекеры, кексы, ромовая баба, кондитерская слойка, восточные сладости и другие мучные изделия) основана на процессах спиртового и молочнокислого брожения, возбудителями которых являются и молочнокислые бактерии.

Особенности технологии хлебобулочных и мучных кондитерских изделий.

Основные стадии технологического процесса производства хлеба следующие: подготовка сырья, замес теста и расстойка теста, выпечка готовых изделий.

В производстве мучных кондитерских изделий используется только пшеничная мука. Хлеб вырабатывают из пшеничной, ржаной муки, а также из их смеси. Технологии приготовления теста из муки ржаной и пшеничной различны, поскольку в этих процессах участвуют различные микроорганизмы.

Приготовление опары. Для приготовления пшеничного теста применяют два способа - опарный и безопарный. Целью приготовления опары является получение наибольшего количества дрожжей с наивысшей активностью. Это достигается тогда, когда начинает падать скорость образования газов СО2, т.е. когда дрожжи привыкают к мучной среде и переключаются с дыхания на брожение, в процессе последнего объем опары увеличивается. В первые 1 - 1,5 ч брожения дрожжевые клетки не размножаются, а происходит увеличение их размеров. Они приспосабливаются к новым условиям среды, т.е. переживают период задержки роста. Затем процесс брожения активизируется, и дрожжи начинают энергично почковаться, т.е. происходит их быстрый рост; он продолжается 4 - 4,5 ч и характеризуется наибольшей скоростью газообразования. Если в это время замесить тесто на готовой опаре, продолжительность его брожения будет минимальной, так как все бродильные ферменты дрожжей приобретут высокую активность за время брожения опары.

Замес и брожение теста. На выброженной опаре замешивают тесто. Оно бродит 1 - 1,5 ч при температуре 30 - 31°С. В бродящих полуфабрикатах происходит спиртовое и молочнокислое брожение, обусловливающие их разрыхление и созревание изменение состава белков и крахмала.

В тесте микроорганизмы снова приспосабливаться к новому составу среды, это приводит к задержке роста клеток, затем они начинают быстро размножаться, т.е. переходят в фазу быстрого роста. Из всех микроорганизмов муки молочнокислые бактерии наиболее приспособлены к развитию в тесте. Размножаясь, они образуют молочную кислоту, которая отрицательно действует на другие микроорганизмы и таким образом создаются условия для развития преимущественно молочнокислых бактерий. Сначала погибают микроорганизмы, живущие в щелочной среде, например, гнилостные бактерии, затем микроорганизмы, развивающиеся в нейтральной среде, - бактерии кишечной группы. При дальнейшем возрастании кислотности погибают уже кислотолюбивые бактерии - уксуснокислые, маслянокислые и другие. В муке имеются микроорганизмы, которые могут развивать и при высокой кислотности среды, но для них необходим кислород, т.е. доступ воздуха. Исключение составляют дрожжи вида Saccharomyces cerevisiae (Сахаромицес церевизия), которые могут жить и в кислородной, и в бескислородной среде, а так как тесто - среда бескислородная, то в нем размножаются только эти дрожжи. Следовательно, в образовании пшеничного теста участвуют дрожжи Saccharomyces cerevisiae и молочнокислые бактерии.

Микробиологические процессы в тесте. В тесте наблюдается симбиоз дрожжей и молочнокислых бактерий. Молочнокислые бактерии сбраживают сахара с образованием молочной кислоты, которая, подкисляя среду, создает благоприятные условия для развития дрожжей. Дрожжи в процессе жизнедеятельности обогащают среду азотистыми веществами и витаминами, необходимыми бактериями. Молочная кислота подавляет жизнедеятельность других микроорганизмов (гнилостных, бактерий кишечной группы, уксуснокислых, маслянокислых и др.), продукты, жизнедеятельности которых токсичны для дрожжей.

В спиртовом брожении теста из пшеничной и ржаной муки участвуют дрожжи, относящиеся к сахаромицетам (Saccharomyces cerevisiae и S. minor). Спиртовое брожение в тесте протекает в анаэробных условиях или при ограниченном доступе кислорода воздуха. В присутствии кислорода дрожжи получают энергию в результате процессов дыхания, т.е. ведут себя как аэробы. Оптимальная температура развития хлебопекарных дрожжей около 30°С. Дрожжи хорошо переносят кислотность среды до 10 - 12 рН. Отрицательное влияние на жизнедеятельность дрожжей указывает избыточное добавление сахара и соли. Молочнокислые бактерии сбраживают молочный сахар лактоза - с образованием молочной кислоты и ряда побочных продуктов. По характеру вызываемого брожения молочнокислые бактерии разделяют на гомоферментативные и гетероферментативные. К гомоферментативным относятся мезофильные молочнокислые бактерии Lactobacillus plantarum (Лактобациллус плантарум) и термофильная палочка Дельбрюка (L. delbrueckii) образующие при брожении только молочную кислоту. К гетероферментативным относятся Lactobacillus brevis (Лактобациллус бревис) и Lactobacillus fermentum (Лактобациллус ферментум), образующие наряду с молочной, уксусную кислоту, спирт, диоксид углерода, водород и другие продукты.

Молочная кислота определяет кислотность теста и этим способствует развитию дрожжей, задерживая размножение вредных, в данном процессе бактерий и является характеристикой полноты процесса, так как по конечной кислотности теста судят о его готовности. Молочная, уксусная, муравьиная кислоты и другие вещества, образующиеся в результате молочнокислого брожения, улучшают вкус и аромат хлеба.

Молочнокислые бактерии нуждаются в углеводах, аминокислотах, витаминах и других факторах роста. Они активны в слабокислых средах, устойчивы к наличию спирта. На развитие молочнокислых бактерий благоприятно влияет, высокая концентрация сахара, соли, накопление молочной и уксусной кислот.

Основными микроорганизмами, синтезирующими молочную кислоту в тесте, являются мезофильные бактерии, имеющий температурный оптимум развития около 35°С. Термофильные молочнокислые бактерии типа бактерий Дельбрюка имеют температурный оптимум 48 - 54°С. С увеличением температуры опары или теста нарастание в них кислотности ускоряется.

Присутствие диких дрожжей и микроскопических грибов в тесте нежелательно, поскольку дикие дрожжи ухудшают подъемную силу прессованных дрожжей, а микроскопические грибы вызывают значительные биохимические изменения. Однако они аэробны и развиваются только при доступе воздуха, поэтому основным препятствием развитию диких дрожжей и микроскопических грибов является недостаток воздуха в тесте.

3. Микроорганизмы, сохраняющиеся в изделиях во время выпечки

В процессе выпечки жизнедеятельность бродильной микрофлоры теста изменяется. При прогревании тестовой заготовки дрожжи и молочнокислые бактерии постепенно отмирают. При выпечке в мякише происходит испарение влаги, поэтому температура в центре мякиша не превышает 96 - 98°С. Некоторые устойчивые споры микроскопических грибов, а также споры сенной палочки не погибают.

После выпечки корка хлеба или выпеченного полуфабриката практически стерильна, но в процессе хранения, транспортировки и реализации в торговой сети может произойти заражения изделий микроорганизмами, в том числе и патогенными. Источниками заражения может быть загрязненный инвентарь (лотки, вагонетки и др.), руки у рабочих, т.е. чаще всего причиной является неудовлетворительное соблюдение санитарных условий. В результате хлеб, хлебобулочные и мучные кондитерские изделия подвергаются микробиологической порче.

4. Виды микробной порчи хлебобулочных и мучных кондитерских изделий

Тягучая болезнь хлеба. Возбудителями тягучей болезни являются спорообразующие бактерии - сенная палочка (Bacillus subtilis). Это мелкие подвижные палочки со слегка закругленными концами, расположенные одиночно или цепочками. Длина сенной палочки 1,5 - 3,5 мкм, толщина - 0,6 - 0,7. Она образует споры, которые легко переносят кипячение и высушивание и погибают мгновенно только при температуре 130°С. При выпечки споры сенной палочки не погибают, а при длительном остывании изделий прорастают и вызывают порчу.

Тягучая болезнь хлеба и мучных кондитерских изделий (например, бисквита) развивается в четыре стадии. Первоначально образуются отдельные тонкие нити, и развивается легкий посторонний запах. Затем запах усиливается, количество нитей увеличивается. Это слабая степень поражения хлеба тягучей болезнью. Далее - при средней степени заболевания - мякиш становится липким, а при сильном - темным и липким, с неприятным запахом.

Для предупреждения тягучей болезни - необходимо обеспечить быстрое охлаждение готовых изделий, т.е. снизить температуру в хлебохранилище и усилить в ней вентиляцию.

Меры борьбы с тягучей болезнью сводятся к созданию условий, препятствующих развитию спор сенной палочки в готовых изделиях, и к уничтожению спор этих бактерий путем дезинфекции. Способы подавления жизнедеятельности сенной палочки в хлебе основаны на её биологических особенностях, в основном на чувствительности к изменению кислотности среды. Для повышения кислотности тесто готовят на заквасках, жидких дрожжах, части спелого теста или опары, а также вносят сгущенную молочную сыворотку, уксусную кислоту и уксуснокислый глицерин в таких количествах, чтобы кислотность хлеба была выше нормы на 1 град.

Хлеб, пораженный тягучей болезнью, запрещается перерабатывать в сухарную муку и использовать в технологическом процессе. Хлеб, пораженный тягучей болезнью, в пищу не употребляют при слабой зараженности он идет на сушку сухарей для животных. Если хлеб не может быть использован для кормовых и технических целей, то его сжигают. Уничтожение спор сенной палочки достигается путем дезинфекции оборудования и помещений.

Складские и производственные помещения подвергают механической очистке, а затем дезинфицируют 3%-ным раствором хлорной извести, стены и полы моют 1%-ным раствором. Металлические, деревянные и тканевые поверхности оборудования обрабатывают 1%-ным раствором уксусной кислоты.

Плесневение. Плесневение хлеба и мучных кондитерских изделий происходит при хранении их в условиях благоприятных для развития микроскопических грибов.

Имеющиеся в муке споры полностью погибают при выпечке хлеба и хлебобулочных изделий, но могут попасть из окружающей среды уже после выпечки, во время охлаждения, транспортировки и хранения. Плесневение вызывается грибами родов Aspergillus, Mucor, Penicillium и др.

Грибы образуют на поверхности выпеченных изделий пушистые налеты белого, серого, зеленого, голубоватого, желтого и черного цветов. Под микроскопом этот налет представляет собой длинные переплетенные нити - мицелий.

При созревании каждого спорангия образуется около сотни спор, из каждой споры вырастает новый мицелий, поэтому грибы размножаются на продуктах очень быстро. Благоприятными условиями для развития микроскопических грибов являются температура 25 - 35°С, относительная влажность воздуха 70 - 80 % и рН от 4,5 до 5,5.

Микроскопические грибы поражают поверхность готовых изделий. Появляется неприятный запах. Заплесневевший хлеб может содержать ядовитые вещества - микотоксины - как в наружных слоях хлеба, так и в мякише. Из микотоксинов в таком хлебе были найдены афлатоксины, которые не только токсичны, но и канцерогенны для людей, и патумен, который не менее токсичен, чем афлатоксины. Поэтому хлеб, пораженный микроскопическими грибами, непригоден в пищу.

Использованная литература

1. Обзор российского рынка хлеба и хлебобулочных изделий [электронный ресурс]/ Система международных маркетинговых центров -- Режим доступа: http://www.marketcenter.ru/

2. В. Федюкин. О государственной промышленной политике в хлебопекарной отрасли [текст]: пром.журнал: Хлебопечение России / Изд. Пищевая промышленность - №8, 2008 - М. 2008 - с.4-5.

3. Молодых В. Российский Союз пекарей на служении отечественному хлебопечению [текст]: пром.журнал: Хлебопечение России / Изд. Пищевая промышленность - №3,2008 - М. 2008 - с. 6-7.

4. Ауэрман Л.Я. Технология хлебопекарного производства [текст]: Учебник. - 9-е изд., перераб и доп. / Под общ. Ред. Л.И. Пучковой. - СПб:Профессия, 2002 - 416с.

5. Сборник рецептур на хлеб и хлебобулочные изделия / Сост. Ершов П.С. - СПб.

6. Пучкова Л.И., Поландова Р.Д., Матвеева И.В. Технология хлеба, кондитерских и макаронных изделий. Часть 1. Технология хлеба. - СПб.:ГИОРД,2005- 559с.

7. Сборник технологических инструкций для производства хлеба и хлебобулочных изделий [текст] / под общ. Ред. А.С,Калмыкова Министерство хлебпродуктов СССР: НПО "ХЛЕБПРОМ" - М:. Прейскурант, 1989 - 493с.

8. Зверева Л.Ф. Технология и технохимический контроль хлебопекарного производства [текст]/ Зверева Л.Ф, Немцова З.С., Волкова Н.П., - 3-е изд. - М.Лекгая и пищевая промышленность, 1983 - 416с.

9. ГОСТ 27844-88 "Изделия булочные. Технические условия"

10. Шебершнева Н.Н., Хабибуллина И.С. Лабораторный практикум по дисциплине "Товароведение и экспертиза зерномучных товаров" [текст] / Шебершнева Н.Н., Хабибуллина И.С - М.: Издательский комплекс МГУПП, 2008. - 160с.

11. ГОСТ 10354-82 Пленка полиэтиленовая. Технические условия

12. ГОСТ 25951-83 Пленка полиэтиленовая термоусадочная. Технические условия

13. ГОСТ 5667-65 Хлеб и хлебобулочные изделия. Правила приемки, методы отбора образцов, методы определения органолептических показателей и массы изделий

14. ГОСТ 5670-96 Хлебобулочные изделия. Методы определения кислотности

15. ГОСТ 5669 - 96 "Хлебобулочные изделия. Метод определения пористости".

16. ГОСТ 21094 - 75 "Хлеб и хлебобулочные изделия. Метод определения влажности".

Размещено на Allbest.ru

Подобные документы

    Исследование истории финско-карельской кухни. Изучение сырья для приготовления хлебобулочных и мучных кондитерских изделий. Анализ ассортимента мучных и кондитерских изделий. Технология приготовления пирогов с начинкой. Составление технологических карт.

    курсовая работа , добавлен 24.06.2015

    Изучение ассортимента сдобных хлебобулочных и мучных кондитерских изделий кафе. Разработка плана–меню, технологической документации, составление технологических схем. Раскрытие организации производственных и трудовых процессов на данном предприятии.

    курсовая работа , добавлен 15.06.2015

    Ассортимент и показатели качества мучных кондитерских изделий. Пищевая ценность кондитерских изделий. Сырье для производства кондитерских изделий. Технология приготовления мучных кондитерских изделий. Десерты.

    курсовая работа , добавлен 09.09.2007

    Характеристика пищевой ценности мучных кондитерских изделий, их значение в питании человека. Роль воды, углеводов, белков и жиров в пищевых продуктах. Составляющие пищевой ценности: энергетическая, биологическая, физиологическая, органолептическая.

    курсовая работа , добавлен 17.06.2011

    Состояние и перспективы развития производства, торговли и потребления мучных кондитерских товаров. Классификация и характеристика ассортимента мучных изделий кондитерской промышленности. Анализ потребительских свойств печенья, пряников и карамели.

    курсовая работа , добавлен 12.12.2011

    Значение кондитерских изделий в питании. Предварительная подготовка продуктов. Технология приготовления изделий: "Чэк-чэк", торта "Тюбетейка", "Бармак". Требования к качеству мучных кондитерских изделий. Санитарные требования, предъявляемые к цеху.

    контрольная работа , добавлен 28.01.2014

    Подготовка сырья к производству мучных и кондитерских изделий. Технологический процесс приготовления кексов на дрожжах и без разрыхлителя. Технологический процесс приготовления полуфабрикатов для кондитерских изделий. Производство карамельного сиропа.

    контрольная работа , добавлен 18.01.2012

    Изучение влияния кондитерских изделий на организм человека. Характеристика полезных и вредных свойств сладостей. Описания шоколадных, мучных и сахаристых кондитерских изделий. Разработка рекомендаций по безопасному употреблению кондитерских изделий.

    реферат , добавлен 12.03.2015

    Способы замеса теста. Дрожжевое тесто и изделия из него. Дефекты изделий, вызванные нарушением рецептуры и режимом его приготовления. Технология изготовления изделий из дрожжевого слоеного теста. Подготовка кондитерских листов к выпечке и режимы выпечки.

    контрольная работа , добавлен 28.03.2011

    История возникновения хлеба и хлебобулочных изделий. Потребительские свойства хлебобулочных изделий. Классификация хлебобулочных изделий. Требования к качеству хлебобулочных изделий. Упаковка, маркировка и хранение хлеба и хлебобулочных изделий.

Микробиологией называют науку о микроскопических живых существах, размер которых не превышает 1 мм. Такие организмы можно рассмотреть только с помощью увеличительных приборов. Объектами микробиологии являются представители разных групп живого мира: бактерии, археи, простейшие, микроскопические водоросли, низшие грибы. Все они характеризуются малыми размерами и объединяются общим термином «микроорганизмы».

Микроорганизмы представляют собой самую большую группу живых существ на Земле, и ее члены распространены повсеместно.

Место микробиологии в системе биологических наук определяется спецификой ее объектов, которые, с одной стороны, в большинстве своем представляют собой одну клетку, а с другой - являются полноценным организмом. Как наука об определенном классе объектов и их разнообразии микробиология аналогична таким дисциплинам, как ботаника и зоология. В то же время она относится к физиолого-биохимической ветви биологических дисциплин, так как изучает функциональные возможности микроорганизмов, их взаимодействие с окружающей средой и другими организмами. И наконец, микробиология - это наука, исследующая общие фундаментальные законы существования всего живого, явления на стыке одно- и многоклеточности, развивающая представления об эволюции живых организмов.

Значение микроорганизмов в природных процессах и человеческой деятельности

Роль микробиологии определяется значением микроорганизмов в природных процессах и в человеческой деятельности. Именно они обеспечивают протекание глобального круговорота элементов на нашей планете. Такие его стадии, как фиксация молекулярного азота, денитрификация или минерализация сложных органических веществ, были бы невозможны без участия микроорганизмов. На деятельности микроорганизмов основан целый ряд необходимых человеку производств продуктов питания, различных химических веществ, лекарственных препаратов и т.д. Микроорганизмы используются для очистки окружающей среды от различных природных и антропогенных загрязнений. В то же время многие микроорганизмы являются возбудителями заболеваний человека, животных, растений, а также вызывают порчу продуктов питания и различных промышленных материалов. Представители других научных дисциплин часто используют микроорганизмы в качестве инструментов и модельных систем при проведении экспериментов.

История микробиологии

История микробиологии исчисляется примерно с 1661 г, когда голландский торговец сукном Антони ван Левенгук (1632-1723) впервые описал микроскопические существа, наблюдаемые им в микроскоп собственного изготовления. В своих микроскопах Левенгук использовал одну короткофокусную линзу, закрепленную в металлическую оправу. Перед линзой находилась толстая игла, к кончику которой прикреплялся исследуемый объект. Иглу можно было передвигать относительно линзы с помощью двух фокусирующих винтов. Линзу следовало приложить к глазу и через нее рассматривать объект на кончике иглы. Будучи по складу характера любознательным и наблюдательным человеком, Левенгук изучил различные субстраты естественного и искусственного происхождения, рассмотрел под микроскопом огромное количество объектов и сделал очень точные рисунки. Он исследовал микроструктуру растительных и животных клеток, сперматозоиды и эритроциты, строение сосудов растений и животных, особенности развития мелких насекомых. Достигнутое увеличение (50-300 раз) позволило Левенгуку увидеть микроскопические существа, названные им «зверушками», описать их основные группы, а также сделать вывод о том, что они вездесущи. Свои заметки о представителях мира микробов (простейших, плесневых грибах и дрожжах, различных формах бактерий - палочковидных, сферических, извитых), о характере их движения и устойчивых сочетаниях клеток Левенгук сопровождал тщательными зарисовками и в виде писем направлял в Английское Королевское общество, которое имело целью поддерживать обмен информацией среди научной общественности. После смерти Левенгука изучение микроорганизмов долго сдерживалось несовершенством увеличительных приборов. Только к середине XIX века были созданы модели световых микроскопов, позволившие другим исследователям детально описать основные группы микроорганизмов. Этот период истории микробиологии можно условно назвать описательным.

Физиологический этап развития микробиологии начался приблизительно с середины 19-го века и связан он с работами французского химика-кристаллографа Луи Пастера (1822-1895) и немецкого сельского врача Роберта Коха (1843-1910). Эти ученые положили начало экспериментальной микробиологии и существенно обогатили методологический арсенал этой науки.

При исследовании причин прокисания вина Л.Пастер установил, что сбраживание виноградного сока и образование спирта осуществляют дрожжи, а порчу вина (появление посторонних запахов, вкусов и ослизнение напитка) вызывают другие микробы. Для предохранения вина от порчи Пастер предложил способ тепловой обработки (нагревание до 70 о С) сразу после брожения, чтобы уничтожить посторонние бактерии. Такой прием, применяемый и сегодня для предохранения молока, вина и пива, получил название «пастеризация».

Исследуя другие виды брожения, Пастер показал, что каждое брожение имеет главный конечный продукт и вызывается микроорганизмами определенного типа. Эти исследования привели к открытию неизвестного ранее образа жизни - анаэробного (бескислородного) метаболизма , при котором кислород не только не нужен, но и часто вреден для микроорганизмов. В то же время для значительного числа аэробных микроорганизмов кислород является необходимым условием их существования. Изучая на примере дрожжей возможность переключения с одного типа обмена веществ на другой, Л.Пастер показал, что анаэробный метаболизм энергетически менее выгоден. Микроорганизмы, способные к такому переключению, он назвал факультативными анаэробами .

Пастер окончательно опроверг возможность самозарождения живых существ из неживой материи в обычных условиях. К тому времени вопрос о самозарождении животных и растений из неживого материала был уже решен отрицательно, а относительно микроорганизмов спор продолжался. Опыты итальянского ученого Ладзаро Спалланцани и французского исследователя Франсуа Аппера по длительному прогреванию питательных субстратов в герметичных сосудах для предотвращения развития микробов подвергались критике сторонников теории самозарождения: они считали, что именно укупорка сосудов препятствует проникновению внутрь некой «жизненной силы». Пастером был проведен изящный эксперимент, поставивший точку в этой дискуссии. Прогретый питательный бульон был помещен в открытый стеклянный сосуд, горлышко которого было вытянуто трубкой и S-образно изогнуто. Воздух мог беспрепятственно проникать внутрь колбы, а клетки микроорганизмов оседали в нижнем изгибе горлышка и не попадали в бульон. В этом случае бульон оставался стерильным неопределенно долго. Если же колбу наклоняли так, что жидкость заполняла нижний изгиб, а затем бульон возвращали обратно в сосуд, то внутри быстро начинали развиваться микроорганизмы.

Работы по изучению «болезней» вина позволили ученому предположить, что возбудителями инфекционных заболеваний животных и человека также могут быть микроорганизмы. Пастер выделил возбудителей ряда болезней и изучил их свойства. Опыты с патогенными микроорганизмами показали, что при определенных условиях они становились менее агрессивными и не убивали зараженный организм. Пастер сделал вывод о возможности прививать ослабленных возбудителей здоровым и зараженным людям и животным, чтобы стимулировать защитные силы организма в борьбе с инфекцией. Ученый назвал материал для прививок вакциной, а сам процесс - вакцинацией. Пастер разработал способы прививок против ряда опасных заболеваний животных и человека, в том от бешенства.

Роберт Кох, начав с доказательства бактериальной этиологии сибирской язвы, затем выделил возбудителей многих болезней в чистой культуре. В своих экспериментах он использовал мелких подопытных животных, а также наблюдал под микроскопом развитие бактериальных клеток в кусочках тканей зараженных мышей. Кохом были разработаны способы выращивания бактерий вне организма, различные методы окраски препаратов для микроскопии и предложена схема получения чистых культур микроорганизмов на твердых средах в виде отдельных колоний. Эти простые приемы до сих пор используются микробиологами всего мира. Кох окончательно сформулировал и экспериментально подтвердил постулаты, доказывающие микробное происхождение заболевания:

  1. микроорганизм должен присутствовать в материале больного;
  2. выделенный в чистой культуре, он должен вызывать ту же болезнь у экспериментально зараженного животного;
  3. из этого животного возбудитель должен быть опять выделен в чистую культуру, и две эти чистые культуры должны быть одинаковыми.

Эти правила получили в дальнейшем название «триада Коха». При исследовании возбудителя сибирской язвы ученый наблюдал образование клетками особых плотных телец (спор). Кох пришел к выводу, что устойчивость этих бактерий в окружающей среде связана со способностью к спорообразованию. Именно споры в течение длительного времени способны заражать скот и в тех местах, где ранее находились больные животные или устраивались скотомогильники.

В 1909 г. за труды по иммунитету русский физиолог Илья Ильич Мечников (1845-1916) и немецкий врач-биохимик Пауль Эрлих (1854—1915) получили Нобелевскую премию по физиологии и медицине.

И.И.Мечников разработал фагоцитарную теорию иммунитета, рассматривавшую процесс поглощения лейкоцитами животных чужеродных агентов как защитную реакцию макроорганизма. Инфекционное заболевание представлялось в этом случае как противостояние патогенных микроорганизмов и фагоцитов организма-хозяина, а выздоровление означало «победу» фагоцитов. В дальнейшем, работая в бактериологических лабораториях сначала в Одессе, а потом в Париже, И.И.Мечников продолжал изучение фагоцитоза, а также принимал участие в исследовании возбудителей сифилиса, холеры и других инфекционных заболеваний и разработке ряда вакцин. На склоне лет И.И.Мечников заинтересовался проблемами старения человека и обосновал полезность использования в пище больших количеств кисломолочных продуктов, содержащих «живые» закваски. Он пропагандировал использование суспензии молочнокислых микроорганизмов, утверждая, что такие бактерии и образуемые ими молочнокислые продукты способны подавлять гнилостные микроорганизмы, производящие вредные шлаки в кишечнике человека.

П.Эрлих, занимаясь экспериментальной медициной и биохимией лекарственных соединений, сформулировал гуморальную теорию иммунитета, согласно которой макроорганизм для борьбы с инфекционными агентами производит специальные химические вещества - антитела и антитоксины, нейтрализующие микробные клетки и выделяемые ими агрессивные субстанции. П.Эрлих разработал методы лечения ряда инфекционных заболеваний и участвовал в создании препарата для борьбы с сифилисом (сальварсана). Ученый первым описал феномен приобретения патогенными микроорганизмами устойчивости к лекарственным препаратам.

Русский эпидемиолог Николай Федорович Гамалея (1859-1948) изучал пути передачи и распространения таких серьезных инфекций как бешенство, холера, оспа, туберкулез, сибирская язва и некоторые заболевания животных. Им усовершенствован разработанный Л.Пастером способ профилактических прививок и предложена вакцина против холеры человека. Ученый разработал и внедрил комплекс санитарно-гигиенических и противоэпидемических мероприятий по борьбе с чумой, холерой, оспой, сыпным и возвратным тифами и другими инфекциями. Н.Ф.Гамалея открыл вещества, растворяющие бактериальные клетки (бактериолизины), описал явление бактериофагии (взаимодействия вирусов и бактериальной клетки) и внес существенный вклад в изучение микробных токсинов.

Признание огромной роли микроорганизмов в биологически важных круговоротах элементов на Земле связано с именами русского ученого Сергея Николаевича Виноградского (1856-1953) и голландского исследователя Мартинуса Бейеринка (1851-1931). Эти ученые изучали группы микроорганизмов, способных осуществлять химические превращения основных элементов и участвовать в биологически важных круговоротах на Земле. С.Н.Виноградский работал с микроорганизмами, использующими неорганические соединения серы, азота, железа и открыл уникальный образ жизни, свойственный только прокариотам, при котором для получения энергии используется восстановленное неорганическое соединение, а для биосинтезов - углерод углекислого газа. Ни животные, ни растения не могут существовать таким способом.

С.Н.Виноградский и М.Бейеринк независимо друг от друга показали способность некоторых прокариот использовать атмосферный азот в своем обмене веществ (фиксировать молекулярный азот). Ими были выделены в виде чистых культур свободноживущие и симбиотические микробы-азотфиксаторы и отмечена глобальная роль таких микроорганизмов в цикле азота. Только прокариотические микроорганизмы могут переводить газообразный азот в связанные формы, используя его для синтеза компонентов клетки. После отмирания азотфиксаторов соединения азота становятся доступными для других организмов. Таким образом, азотфиксирующие микроорганизмы замыкают биологический круговорот азота на Земле.

На рубеже XIX-XX веков русский физиолог растений и микробиолог Дмитрий Иосифович Ивановский (1864-1920) открыл вирус табачной мозаики, тем самым обнаружив особую группу биологических объектов, не имеющих клеточного строения. При исследовании инфекционной природы мозаичной болезни табака ученый попытался очистить сок растения от возбудителя, пропуская его через бактериальный фильтр. Однако после этой процедуры сок был способен заражать здоровые растения, т.е. возбудитель оказался гораздо меньше всех известных микроорганизмов. В дальнейшем оказалось, что целый ряд известных заболеваний вызывается подобными возбудителями. Их назвали вирусами. Увидеть вирусы удалось только в электронный микроскоп. Вирусы являются особой группой биологических объектов, не имеющих клеточного строения, изучением которых в настоящее время занимается наука вирусология.

В 1929 г. английским бактериологом и иммунологом Александром Флемингом (1881-1955) был открыт первый антибиотик пенициллин. Ученый интересовался вопросами развития инфекционных болезней и действия на них различных химических препаратов (сальварсана, антисептиков). Во время Первой мировой войны в госпиталях раненые сотнями умирали от заражения крови. Повязки с антисептиками лишь немного облегчали состояние больных. Флеминг поставил опыт, создав модель рваной раны из стекла и заполнив ее питательной средой. В качестве «микробного загрязнения» он использовал навоз. Промывая стеклянную «рану» раствором сильного антисептика и затем заполняя ее чистой средой Флеминг показал, что антисептики не убивают микроорганизмы в неровностях «раны» и не останавливают инфекционный процесс. Осуществляя множество посевов на твердые среды в чашках Петри, ученый проверял антимикробный эффект различных выделений человека (слюны, слизи, слезной жидкости) и открыл лизоцим, убивающий некоторые болезнетворные бактерии. Чашки с посевами сохранялись Флемингом длительное время и многократно просматривались. В тех чашках, куда случайно попали споры грибов и выросли колонии плесени, ученый заметил отсутствие роста бактерий вокруг этих колоний. Специально поставленные эксперименты показали, что вещество, выделяемое плесневым грибом из рода Penicillium губительно для бактерий, но не опасно для подопытных животных. Флеминг назвал это вещество пенициллином. Использование пенициллина в качестве лекарства стало возможным только после выделения его из питательного бульона и получения в химически чистом виде (в 1940 г.), что в дальнейшем привело к разработке целого класса лекарственных препаратов, названных антибиотиками. Начались активные поиски новых продуцентов антимикробных веществ и выделение новых антибиотиков. Так, в 1944 г. американский микробиолог Зельман Ваксман (1888-1973) получил с помощью ветвящихся бактерий рода Streptomyces широко применяемый антибиотик стрептомицин.

Ко второй половине XIX века микробиологами был накоплен огромный материал, свидетельствующий о чрезвычайном разнообразии типов микробного обмена веществ. Изучению многообразия жизненных форм и выявлению их общих черт посвящены работы голландского микробиолога и биохимика Алберта Яна Клюйвера (1888-1956) и его учеников. Под его руководством было проведено сравнительное изучение биохимии далеко отстоящих друг от друга систематических и физиологических групп микроорганизмов, а также анализ данных физиологии и генетики. Эти работы позволили делать вывод об однотипности макромолекул, составляющих все живое, и об универсальности биологической «энергетической валюты» - молекул АТФ. Разработка общей схемы метаболических путей в значительной степени базируется на исследованиях фотосинтеза высших растений и бактерий, проведенных учеником А.Я.Клюйвера Корнелиусом ван Нилем (1897-1985). К. ван Ниль изучил обмен веществ различных фотосинтезирующих прокариот и предложил обобщающее суммарное уравнение фотосинтеза: CO 2 +H 2 A+ һν → (CH 2 O) n +A, где H 2 A - либо вода, либо другое окисляемое вещество. Такое уравнение предполагало, что именно вода, а не углекислый газ, разлагается при фотосинтезе с выделением кислорода. К середине XX века выводы А.Я.Клюйвера и его учеников (в частности, К. ван Ниля) легли в основу принципа биохимического единства жизни.

Развитие отечественной микробиологии представлено различными направлениями и деятельностью многих известных ученых. Целый ряд научных учреждений нашей страны носит имена многих из них. Так, Лев Семенович Ценковский (1822-1877) изучил большое число простейших, микроводорослей, низших грибов и сделал вывод об отсутствии четкой границы между одноклеточными животными и растениями. Он также разработал способ прививки против сибирской язвы с применением «живой вакцины Ценковского» и организовал пастеровскую станцию вакцинации в Харькове. Георгий Норбертович Габричевский (1860-1907) предложил способ лечения дифтерии с помощью сыворотки и участвовал в создании производства бактериальных препаратов в России. Ученик С.Н.Виноградского Василий Леонидович Омелянский (1867-1928) исследовал микроорганизмы, участвующие в превращениях соединений углерода, азота, серы и в процессе анаэробного разложения целлюлозы. Его работы расширили представления о деятельности микроорганизмов почвы. В.Л.Омелянский предложил схемы круговоротов биогенных элементов в природе. Георгий Адамович Надсон (1867-1939) сначала занимался микробной геохимической деятельностью и воздействием различных повреждающих факторов на микробные клетки. В дальнейшем его работы были посвящены изучению наследственности и изменчивости микроорганизмов и получению устойчивых искусственных мутантов низших грибов под действием излучений. Одним из основоположников морской микробиологии является Борис Лаврентьевич Исаченко (1871-1948). Им была высказана гипотеза о биогенном происхождении месторождений серы и кальция. Владимир Николаевич Шапошников (1884-1968) является основателем отечественной технической микробиологии. Его работы по физиологии микроорганизмов посвящены изучению различных видов брожения. Им открыто явление двухфазности ряда микробиологических процессов и разработка способов управления ими. Исследования В.Н.Шапошникова стали основой для организации в СССР микробиологических производств органических кислот и растворителей. Работы Зинаиды Виссарионовны Ермольевой (1898-1974) внесли существенный вклад в физиологию и биохимию микроорганизмов, медицинскую микробиологию, а также способствовали становлению микробиологического производства ряда отечественных антибиотиков. Так, она исследовала возбудители холеры и другие холероподобные вибрионы, их взаимодействие с организмом человека и предложила санитарные нормы хлорирования водопроводной воды в качестве средства профилактики этого опасного заболевания. Ею был создан и применен для профилактики препарат холерного бактериофага, а в дальнейшем - и комплексный препарат против холеры, дифтерии и брюшного тифа. Применение лизоцима в медицинской практике основано на работах З.В.Ермольевой по обнаружению новых растительных источников лизоцима, установлению его химической природы, разработке метода выделения и концентрирования. Получение отечественного штамма продуцента пенициллина и организация промышленного производства препарата пенициллина-крустозина в годы Великой Отечественной войны - это неоценимая заслуга З.В.Ермольевой. Эти исследования явились импульсом для поиска и селекции отечественных продуцентов других антибиотиков (стрептомицина, тетрациклина, левомицетина, экмолина). Работы Николая Александровича Красильникова (1896-1973) посвящены изучению мицелиальных прокариотических микроорганизмов - актиномицетов. Подробное исследование свойств этих микроорганизмов позволило Н.А.Красильникову создать определитель актиномицетов. Ученый был одним из первых исследователей явления антагонизма в мире микробов, что позволило ему выделить актиномицетный антибиотик мицетин. Н.А.Красильников изучал также взаимодействие актиномицетов с другими бактериями и высшими растениями. Его работы по почвенной микробиологии посвящены роли микроорганизмов в почвообразовании, распределению их в почвах и влиянию на плодородие. Ученица В.Н.Шапошникова, Елена Николаевна Кондратьева (1925-1995) возглавляла изучение физиологии и биохимии фотосинтезирующих и хемолитотрофных микроорганизмов. Ею подробно проанализированы особенности метаболизма таких прокариот и выявлены общие закономерности фотосинтеза и углеродного обмена. Под руководством Е.Н.Кондратьевой был открыт новый путь автотрофной фиксации СО 2 у зеленых несерных бактерий, проведено выделение и подробное изучение штаммов фототрофных бактерий нового семейства. В ее лаборатории была создана уникальная коллекция бактерий-фототрофов. Е.Н.Кондратьева была инициатором исследований метаболизма микроорганизмов-метилотрофов, использующих в своем метаболизме одноуглеродные соединения.

В XX веке микробиология полностью сложилась как самостоятельная наука. Дальнейшее ее развитие происходило с учетом открытий, сделанных в других областях биологии (биохимии, генетике, молекулярной биологии и т.д.). В настоящее время многие микробиологические исследования проводятся совместно специалистами разных биологических дисциплин. Многочисленные достижения микробиологии конца XX - начала XXI веков будут кратко изложены в соответствующих разделах учебника.

Основные направления в современной микробиологии.

Уже к концу XIX века микробиология в зависимости от выполняемых задач начинает подразделяться на ряд направлений. Так, исследования основных законов существования микроорганизмов и их разнообразия относят к общей микробиологии, а частная микробиология изучает особенности их разных групп. Задача природоведческой микробиологии - выявление способов жизнедеятельности микроорганизмов в естественных местах обитания и их роли в природных процессах. Особенности болезнетворных микроорганизмов, вызывающих заболевания человека и животных, и их взаимодействие с организмом хозяина изучают медицинская и ветеринарная микробиология, а микробные процессы в земледелии и животноводстве исследует сельскохозяйственная микробиология. Почвенная, морская, космическая и т.д. микробиология - это разделы, посвященные свойствам специфических для этих природных сред микроорганизмам и процессам, с ними связанным. И наконец, промышленная (техническая) микробиология как часть биотехнологии изучает свойства микроорганизмов, используемых для различных производств. В то же время от микробиологии отделяются новые научные дисциплины, занимающиеся изучением определенных более узких групп объектов (вирусология, микология, альгология и др.). В конце XX века усиливается интеграция биологии наук и многие исследования происходят на стыке дисциплин, образуя такие направления, как молекулярная микробиология, генная инженерия и др.

В современной микробиологии можно выделить несколько основных направлений. С развитием и совершенствованием методологического арсенала биологии активизировались фундаментальные микробиологические исследования, посвященные выяснению путей метаболизма и способов их регуляции. Бурно развивается систематика микроорганизмов, ставящая цель создать такую классификацию объектов, которая отражала бы место микроорганизмов в системе всего живого, родственные связи и эволюцию живых существ, т.е. осуществить построение филогенетического древа. Изучение роли микроорганизмов в природных процессах и антропогенных системах (экологическая микробиология) крайне актуально в связи с повышенным интересом к современным экологическим проблемам. Значительное внимание привлекают исследования популяционной микробиологии, занимающейся выяснением природы межклеточных контактов и способов взаимодействия клеток в популяции. Не теряют актуальности те направления микробиологии, которые связаны с применением микроорганизмов в человеческой деятельности.

Дальнейшее развитие микробиологии в XXI веке наряду с накоплением фундаментальных знаний призвано помочь решению ряда глобальных проблем человечества. В результате варварского отношения к природе и повсеместного загрязнения окружающей среды антропогенными отходами возник значительный дисбаланс в круговоротах веществ на нашей планете. Только микроорганизмы, обладая широчайшими метаболическими возможностями, высокой пластичностью обмена веществ и значительной устойчивостью к повреждающим факторам, могут преобразовать стойкие и токсичные загрязнения в безвредные для природы соединения, а в ряде случаев и в пригодные для дальнейшего использования человеком продукты. Тем самым понизится выброс так называемых «парниковых газов» и стабилизируется газовый состав атмосферы Земли. Осуществляя защиту окружающей среды от загрязнений, микроорганизмы одновременно будут способствовать постоянству глобального круговорота элементов. Микроорганизмы, развиваясь на отходах промышленности и сельского хозяйства, могут служить альтернативными источниками топлива (биогаза, биоэтанола и других спиртов, биоводорода и т.д.). Это позволит решить энергетические проблемы человечества, связанные с истощением полезных ископаемых (нефти, угля, природного газа, торфа). Восполнение продовольственных ресурсов (особенно белковых) возможно путем введения в рацион питания дешевой микробной биомассы быстрорастущих штаммов, полученной на отходах пищевой промышленности или на очень простых средах. Сохранению здоровья человеческой популяции будут способствовать не только тщательное изучение свойств патогенных микроорганизмов и выработка методов защиты от них, но и переход на «природные лекарства» (пробиотики), повышающие иммунный статус человеческого организма.

Наука о формах, сочетаниях и размерах клеток микроорганизмов, их дифференциации, а также размножении и развитии. - наука о многообразии микроорганизмов и их классификации по степени родства. В настоящее время в основу систематики микроорганизмов положены молекулярно-биологические методы.- наука об обмене веществ (метаболизме) микроорганизмов, включающая способы потребления питательных веществ, их разложение, синтез веществ, а также способы получения микроорганизмами энергии в результате процессов брожения , анаэробного дыхания , аэробного дыхания и фотосинтеза .

  • Экология микроорганизмов - наука, изучающая влияние факторов внешней среды на микроорганизмы, взаимоотношения микроорганизмов с другими микроорганизмами и роль микроорганизмов в экосистемах.
  • Прикладная микробиология и биотехнология микроорганизмов - наука о практическом применении микроорганизмов, производстве биологически активных веществ (антибиотиков, ферментов, аминокислот, низкомолекулярных регуляторных соединений, органических кислот) и биотоплива (биогазы, спирты) с помощью микроорганизмов, условиях образования и способы регуляции образования данных продуктов.
  • Рекомендуемая литература

    Поль де Крюи. Охотники за микробами. Научно-популярное издание.

    Гучев М.В., Минеева Л.А. Микробиология. Учебник для ВУЗов.

    Нетрусов А.И., Котова И.Б. Общая микробиология. Учебник для ВУЗов.

    Нетрусов А.И., Котова И.Б. Микробиология. Учебник для ВУЗов.

    Практикум по микробиологии. Под ред. А.И. Нетрусова. Учебное пособие для ВУЗов.

    Экология микроорганизмов. Под ред. А.И. Нетрусова. Учебное пособие для ВУЗов.

    Заварзин Г.А. Лекции по природоведческой микробиологии. Научное издание.

    Колотилова Н.Н., Заварзин Г.А. Введение в природоведческую микробиологию. Учебное пособие для ВУЗов.

    Кондратьева Е.Н. Автотрофные прокариоты. Учебное пособие для ВУЗов.

    Егоров Н.С. Основы учения об антибиотиках. Учебник для ВУЗов.

    Промышленная микробиология. Под ред. Н.С. Егорова. Учебное пособие для ВУЗов.

    Страница 33 из 36

    Микробиология

    Микробиология – это наука, изучающая микроорганизмы (бактерии, микроскопические грибы, водоросли), их систематику, морфологию, физиологию, биохимию, наследственность и изменчивость, их распространение и роль в круговороте веществ в природе, а также их практическое значение.

    Возникновение и развитие микробиологии. Начало микробиологии связывают с именем голландского исследователя А. Левенгука (1632-1723), который впервые увидел бактерии и дрожжи, рассматривая с помощью изготовленных им микроскопов зубной налёт, растительные настои, пиво и т.д. Однако подлинным творцом микробиологии как науки был Л. Пастер, выяснив-ший роль микроорганизмов в брожении (виноделие, пивоварение) и в возникновении болезней животных и человека. Исключительное значение для борьбы с заразными болезнями имел предложенный Пастером метод предохранительных прививок, основанный на введении в организм животного или человека ослабленных культур болезнетворных микроорганизмов. Задолго до открытия вирусов Пастер предложил прививки против вирусной болезни - бешенства. Работы Пастера послужили научной основой стерилизации хирургических инструментов и перевязочных материалов, приготовления консервов, пастеризации пищевых продуктов и т.д. Идеи Пастера о роли микроорганизмов в круговороте веществ в природе были развиты основоположником общей микробиологии в России С.Н. Виноградским, открывшим хемоавто-трофные микроорганизмы, которые усваивают углекислый газ атмосферы за счет энергии окисления неорганических веществ, и бактерии, разлагающие целлюлозу в аэробных условиях.
    В развитии медицинской микробиологии важная роль принадлежит Р. Коху, открывшему возбудителей туберкулеза и холеры и предложившему плотные питательные среды для выращивания микроорганизмов. Существенный вклад в развитие медицинской микробиологии и иммунологии внесли Э. Беринг (Германия), Э. Ру (Франция), С. Китазато (Япония), а в России и СССР – И.И. Мечников, Л.А. Тарасевич, Д.К. Заболотный, Н.Ф. Гамалея.

    Развитие микробиологии и потребности практики привели к обособлению ряда разделов микробиологии в самостоятельные научные дисциплины, в частности, такие как:

    1. Общая микробиология, которая изучает фундаментальные закономерности биологии микроорганизмов.

    2. Техническая, или промышленная микробиология, задачей которой является изучение и осуществление микробиологических процессов, применяемых для получения дрожжей, кормового белка, липидов, бактериальных удобрений, а также получение путем микробиологического син-теза антибиотиков, витаминов, ферментов, аминокислот, нуклеотидов, органических кислот и т.п.

    3. Сельскохозяйственная микробиология, которая выясняет состав почвенной микрофлоры, её роль в круговороте веществ в почве, а также её значение для структуры и плодородия почвы, влияние обработки на микробиологические процессы в ней, действие бактериальных препаратов на урожайность растений. В ее задачу входят также изучение микроорганизмов, вызывающих заболевания растений, и борьба с ними, разработка микробиологических способов борьбы с насекомыми - вредителями, методов консервирования кормов, мочки льна, предохранения урожая от порчи, вызываемой микроорганизмами.

    4. Геологическая микробиология, объектом изучения которой является роль микроорганизмов в круговороте веществ в природе, в образовании и разрушении залежей полезных ископаемых. Результатом прикладных исследований в этой области являются методы получения (выщелачи-вания) из руд металлов (медь, германий, уран, олово) и др. ископаемых с помощью бактерий.

    5. Водная микробиология изучающая количественный и качественный состав микрофлоры соленых и пресных вод и ее роль в биохимических процессах, протекающих в водоемах, осуществляет контроль за качеством питьевой воды, совершенствует микробиологические методы очистки сточных вод.

    6. Медицинская микробиология, которая исследует микроорганизмы, вызывающие заболева-ния человека, и разрабатывает эффективные методы борьбы с ними.

    Следует отметить, что если ранее к объектам изучения микробиологии относили также и вирусы, то в настоящее время своеобразие строения и размножения вирусов, а также применение специальных методов их исследования привели к возникновению вирусологии как самостоятельной науки, не относящейся к микробиологии. В наши дни микробиология бурно развивается. Существуют три основных причины такого развития:

    – благодаря успехам физики, химии и техники микробиология получила большое число новых методов исследования;

    – начиная с 40-х гг. XX в. резко возросло практическое применение микроорганизмов;

    – микроорганизмы стали использовать для решения важнейших биологических проблем, таких, как наследственность и изменчивость, биосинтез органических соединений, регуляция обмена веществ и др.

    Успешное развитие современной микробиологии невозможно без гармонического сочетания исследований, проводимых на популяционном, клеточном, органном и молекулярном уровнях. Для исследования морфологии и цитологии микроорганизмов разработаны новые виды микроско-пической техники. Так, в СССР был изобретён метод капиллярной микроскопии, позволивший открыть новый, ранее не доступный для наблюдения мир микроорганизмов, обладающих своеобразной морфологией и физиологией.

    Для изучения обмена веществ и химического состава микроорганизмов получили распространение различные методы физико-химической биологии: хроматография, масс-спектрометрия, метод изотопных индикаторов, электрофорез. С помощью электронного микрос-копа стало возможным изучение тонких особенностей строения цитоплазматических мембран и рибосом, их состава и функций (например, роль цитоплазматических мембран в процессах транспорта различных веществ или участие рибосом в биосинтезе белка).

    Широкое распространение получило непрерывное культивирование микроорганизмов, основанное на постоянном притоке свежей питательной среды и оттоке жидкой культуры. Установлено, что наряду с размножением клеток (ростом культуры) происходит развитие куль-туры, т.е. возрастные изменения у клеток, составляющих культуру, сопровождающиеся измене-нием их физиологии. Примером может служить тот факт, что молодые клетки, даже интенсивно размножаясь, не способны синтезировать многие продукты жизнедеятельности, например ацетон, бутанол, антибиотики, образуемые более старыми культурами. Современные методы изучения физиологии и биохимии микроорганизмов дали возможность расшифровать особенности их энергетического обмена, пути биосинтеза аминокислот, многих белков, антибиотиков, некоторых липидов, гормонов и др. соединений, а также установить принципы регуляции обмена веществ у микроорганизмов.

    Практическое значение микробиологии. В настоящее время весьма велика роль прикладных исследований в области микробиологии. Еще в глубокой древности, за несколько тысяч лет до возникновения микробиологии как науки человек, не зная о существовании микроорганизмов, широко применял их для приготовления кумыса и др. кисломолочных продуктов, получения вина, пива, уксуса, при силосовании кормов, мочке льна. Микроорганизмы играют важнейшую роль в плодородии почв, в продуктивности водоёмов, в образовании и разрушении залежей полезных ископаемых. Особенно важна способность микроорганизмов минерализовать органические остатки животных и растений. Всё возрастающее применение микроорганизмов в практике привело к возникновению микробиологической промышленности и к значительному расширению микробиологических исследований в различных отраслях промышленности и сельского хозяйства. С середины XIX в. до 40-х гг. XX в. техническая микробиология в основном изучала различные брожения, а микроорганизмы использовались преимущественно в пищевой промышленности. С 40х гг. быстро развиваются новые направления технической микробиологии, которые связаны с появлением нового поколения оборудования и аппаратуры. Выращивание микроорганизмов стали проводить в закрытых ферментёрах большой ёмкости, совершенствовались методы отделения клеток микроорганизмов от культуральной жидкости, выделения из последней и химической очистки их продуктов обмена.

    Одним из первых возникло и развилось производство антибиотиков. В широких масштабах микробиологическим путём получают аминокислоты (лизин, глутаминовая кислота, триптофан
    и др.), ферменты, витамины, а также кормовые дрожжи на непищевом сырье (сульфитные щелока, гидролизаты древесины, торфа и сельскохозяйственные растительные отходы, углеводороды нефти и природного газа, фенольные или крахмалсодержащие сточные воды и т.д.). Осуществляется получение микробиологическим путём полисахаридов и осваивается промышленный биосинтез липидов. Резко возросло применение микроорганизмов в сельском хозяйстве. Увеличилось производство бактериальных удобрений, в частности, нитрагина, приго-товляемого из культур клубеньковых бактерий, фиксирующих азот в условиях симбиоза с бобовыми растениями, и применяемого для заражения семян бобовых культур. Новое направление сельскохозяйственной микробиологии связано с микробиологическими методами борьбы с насекомыми и их личинками - вредителями сельскохозяйственных растений и лесов. Найдены бактерии и грибы, убивающие своими токсинами этих вредителей, освоено производство соответствующих препаратов. Высушенные клетки молочнокислых бактерий используют для лечения кишечных заболеваний человека и сельскохозяйственных животных. Известно, что деление микроорганизмов на полезные и вредные условно, т.к. оценка результатов их деятельности зависит от условий, в которых она проявляется. Так, разложение целлюлозы микроорганизмами важно и полезно в растительных остатках или при переваривании пищи в пищеварительном тракте (животные и человек не способны усваивать целлюлозу без её предварительного гидролиза микробным ферментом целлюлозой). В то же время эти же микроорганизмы разрушают рыболовные сети, канаты, картон, бумагу, книги, хлопчатобумажные ткани и т.д. Даже болезнетворные микроорганизмы не могут быть отнесены к абсолютно вредным, т.к. из них приготовляют вакцины, предохраняющие животных или человека от заболеваний. Микроорганизмы используются, когда возникает необходимость ускорить разложение определённых химических веществ, например пестицидов, в почве. Велика роль микроорганизмов при очистке сточных вод (минерализация веществ, содержащихся в сточных водах).



    Оглавление
    Живые системы.
    Дидактический план
    Специфика и системность живого
    Основные свойства живых систем
    Уровни организации живых систем
    Биохимические основы жизни
    Становление клеточной теории
    Строение и размножение клеток
    Типы клеток и организмов

    И ещё 26 файл(а).
    Показать все связанные файлы


    1. Микробиология как наука. Задачи и методы исследования в микробиологии.
    Микробиология (от греч. micros- малый, bios- жизнь, logos- учение, т.е. учение о малых формах жизни) - наука, изучающая организмы , неразличимые невооруженным глазом, которые за свои микроскопические размеры называют микроорганизмы (микробы).

    Предмет микробиологии – микроорганизмы, их морфология, физиология, генетика, систематика, экология и взаимоотношения с другими формами жизни. Для медицинской микробиологии – патогенные и условно-патогенные микроорганизмы.

    Микроорганизмы - наиболее древняя форма организации жизни на Земле, они появились задолго до возникновения растений и животных - примерно 3-4 млрд. лет тому назад.

    Задачи микробиологии:

    Задачи медицинской микробиологии:

    1. Изучение биологии патогенных (болезнетворных) и нормальных для человека микробов.

    2. Изучение роли микробов в возникновении, развитии инфекционных (заразных) болезней и формировании иммунного ответа макроорганизма ("хозяина").

    3. Разработка методов микробиологической диагностики, специфического лечения и профилактики инфекционных болезней человека.

    Методы исследования в микробиологии:


    1. Микроскопический - изучение морфологии микробов в окрашенном и неокрашенном состоянии с помощью различных типов микроскопов.

    2. Микробиологический (бактериологические, микологические, вирусологические). Метод основан на выделение чистой культуры возбудителя и ее последующей идентификации.

    3. Химический

    4. Экспериментальный (биологический) - заражение микробами лабораторных животных.

    5. Иммунологический (в диагностике инфекций) - изучение ответных специфических реакций макроорганизма на контакт с микробами.

    1. Основные периоды в развитии микробиологии и иммунологии.
    Выделяют следующие периоды:

    1. Начальный период
    Вторая половина XIII века по середину XIX. Он связан с созданием Левенгуком простейшего микроскопа и открытием микроскопических существ, невидимых невооруженным взглядом.

    1. Пастеровский период
    Луи Пастер является основоположником микробиологии как науки. Его исследования:

    • брожение

    • роль микробов в круговороте веществ в природе и самопроизвольном зарождении.
    Они составили теоретическую базу современной микробиологии. Пастер установил, что в определенных условиях патогенные микробы теряют свою вирулентность. На основе этого открытия он создает вакцины.

    Рядом с именем Пастера встало имя Роберта Коха, выдающегося мастера прикладных исследований, он открыл возбудителя сибирской язвы, холеры, туберкулеза и других микроорганизмов.


    1. Третий период
    Первая половина XX века. Развитие микробиологии , иммунологии и вирусологии. Здесь важным является открытия Ивановского – возбудители мозаичной болезни табака. Были открыты фильтрующиеся инфекционные агенты - вирусы, L-формы бактерий, микоплазмы. Более интенсивно развивались прикладные аспекты иммунологии. П.Эрлиху разработать гуморальную теорию иммунитета. Мечников – теория фагоцитоза. Следующим важным этапом в развитии микробиологии стало открытие антибиотиков. В 1929г. А.Флеминг открыл пенициллин.

    1. Современный период.
    Создание электронного микроскопа сделало видимым мир вирусов и макромолекулярных соединений. Изучение генов, строение вирусов, бактерий на молекулярном уровне. Генная инженерия, расшифровка геномов. Изучена роль ДНК в передаче наследственных признаков. Революция в иммунологии. Она стала наукой, изучающей не только инфекции и защиту от них, но и изучающая механизмы самозащиты организма от всего генетически чужеродного, поддержании целостности организма.

    3. Основоположники микробиологии.

    Л.Пастер


    1. изучение микробиологических основ процессов брожения и гниения,

    2. развитие промышленной микробиологии,

    3. выяснение роли микроорганизмов в кругообороте веществ в природе,

    4. открытие анаэробных микроорганизмов ,

    5. разработка принципов асептики,

    6. разработка методов стерилизации,

    7. ослабление (аттенуации) вирулентности. Степень патогенности – вирулентность. Таким образом, если ослабить вирулентность, то можно получить вакцину.

    8. получение вакцин (вакцинных штаммов) – холера и бешенство.

    9. Пастеру принадлежит честь открытия стафилококков, стрептококков

    Р.Кох - немецкий естествоиспытатель, ученик Пастера.


    4. Роль отечественных ученых в развитии микробиологии.


    1. Ценковский Л.С . организовал производство сибиреязвенной вакцины, и 1883 успешно ее использовал для вакцинации скота.

    2. Минх. Доказал, что спирохета возвратного тифа является возбудителем заболевания.

    3. Мочутковский самозаразил себя сыпным тифом (ввел кровь больной), доказав, что возбудитель присутствует в крови больного.

    4. Леша Ф.А. Доказал, что дизентерию могут вызывать простейшие, принадлежащие амебам.

    5. Большое значение в микробиологии сыграл И.И. Мечников. Он был создателем фагоцитарной теории иммунитета. Затем он издает труд «Невосприимчивость к к инфекционным болезням».

    6. В 1886 в Одессе открыта первая бактериологическая станция, заведовал ей Мечников и его помощники Гамель Н.Ф. и Барлах Л.В.

    7. Далее станция открыта в Харькове. Заведовал Виноградский. Он работал в области общей микробиологии. Открыл серо- и железобактерии, нитрифицирующие бактерии – возбудители нитрификации в почве.

    8. Д.И. Ивановский (открыл вирус табачной мозаики, считается основателем вирусологии).

    9. Цинковский (участвовал в разработке методов прививки от сибирской язвы).

    10. Амилянский – написал первый учебник «Основы микробиологии», открыл возбудителя брожения клетчатки , изучил азотофиксирующие бактерии.

    11. Михин – положил начало ветеринарной микробиологии, открыл возбудителя лептоспироза.

    12. Шапошников – основоположник технической микробиологии.

    13. Войткевич – работал с ацидофильной палочкой, считается основоположником лечебного и диетического питания для животных.

    С середины 20 века микробиология как дисциплина была включена в программу обучения студентов.

    5. Основы систематики и номенклатуры микроорганизмов.

    Согласно современной систематике, микроорганизмы к 3 царствам:

    I. Прокариоты:
    * Эубактерии
    1. Грациликуты (тонкая клеточная стенка)
    2. Фирмикуты (толстая клеточная стенка)
    3. Тенерикуты (нет клеточной стенки)
    Спирохеты, риккетсии, хламидии, микоплазмы, актиномицеты.
    * Архебактерии
    4. Мендосикуты
    II. Эукариоты: Животные Растения Грибы Простейшие
    III. Неклеточные формы жизни: Вирусы Прионы Плазмиды

    Вид – Род – Семейство – Порядок – Класс – Отдел – Царство.

    Обозначение микроорганизмов включает в себя название рода и вида. Род с большой буквы , вид с маленькой. Родовое название по фамилии автора или морфологии бактерий. Видовое название – по клиническим признакам, морфологии колоний, месту обитания.

    В настоящее время для систематики микроорганизмов используется ряд таксономических систем.

    1. Нумерическая таксономия . Признает равноценность всех признаков. Для ее применения необходимо иметь информацию о многих десятках признаков. Видовая принадлежность устанавливается по числу совпадающих признаков.

    2. Серотаксономия. Изучает антигены бактерий с помощью реакций с иммунными сыворотками. Наиболее часто применяется в медицинской бактериологии. Недостаток – бактерии не всегда cодержат видоспецифический антиген.

    3. Хемотакcономия. Применяются физико-химические методы, с помощью которых исследуется липидный, аминокислотный состав микробной клетки и определенных ее компонентов.

    4. Генная систематика. Основана на способности бактерий с гомологичными ДНК к трансформации , трансдукции и конъюгации, на анализе внехромосомных факторов наследственности – плазмид, транспозонов, фагов.еографическому месту выявления.

    Специализированные термины:

    Вид – эволюционно сложившаяся совокупность особей, имеющая единый генотип, проявляющийся сходными фенотипическими признаками.

    Вариант – особи одного вида, различающиеся по разным признакам (серовары, хемовары, культивары, морфовары, фаговары).

    Популяция – совокупность особей одного вида, относительно длительно обитающих на определенной территории .

    Культура – совокупность бактерий одного вида (чистая) или нескольких видов (смешанная), выращенная на питательной среде (жидкой или плотной).

    Штамм – чистая культура одного вида бактерий, выделенная в определенное время из одного источника .

    Колония – видимое скопление бактерий одного вида на поверхности или в глубине плотной питательной среды.

    Клон – культура клеток, выращенная из одного микроорганизма методом клонирования.

    Понравилась статья? Поделитесь ей